Flat connections, the Alexander invariant, and Casson’s invariant

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant elements in the dual Steenrod algebra

‎In this paper‎, ‎we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$‎, ‎where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$‎.

متن کامل

A Diagrammatic Multivariate Alexander Invariant of Tangles

Recently, Bigelow defined a diagrammatic method for calculating the Alexander polynomial of a knot or link by resolving crossings in a planar algebra. I will present my multivariate version of Bigelow’s calculation. The advantage to my algorithm is that it generalizes to a multivariate tangle invariant up to Reidemeister I. I will conclude with a possible link to subfactor planar algebras from ...

متن کامل

A Diagrammatic Alexander Invariant of Tangles

We give a new construction of the one-variable Alexander polynomial of an oriented knot or link, and show that it generalizes to a vector valued invariant of oriented tangles.

متن کامل

Compactness Theorems for Invariant Connections

The Palais-Smale Condition C holds for the Yang-Mills functional on principal bundles over compact manifolds of dimension ≤ 3. This was established by S. Sedlacek [17] and C. Taubes [18] Proposition 4.5 using the compactness theorem of K. Uhlenbeck [20]; see also [23]. It is well known that Condition C fails for Yang-Mills over compact manifolds of dimension ≥ 4. The example of SO(3)-invariant ...

متن کامل

Balloons and Hoops and Their Universal Finite Type Invariant, Bf Theory, and an Ultimate Alexander Invariant

Balloons are two-dimensional spheres. Hoops are one dimensional loops. Knotted Balloons and Hoops (KBH) in 4-space behave much like the first and second homotopy groups of a topological space — hoops can be composed as in π1, balloons as in π2, and hoops “act” on balloons as π1 acts on π2. We observe that ordinary knots and tangles in 3-space map into KBH in 4-space and become amalgams of both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 1997

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.1997.v5.n1.a2